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1 Introduction

Quantum algorithms offer exponential speedup over classical algorithms in various fields such as machine
learning [18, 22, 39], quantum simulation [15] and cryptography [40]. However, these advantages are hard to
realize due to the inherent fragility of quantum computing hardware. The error rate of the state-of-the-art
superconducting quantum devices is around 1073 per operation [3, 17, 45], which falls far short of meeting the
demands of practical quantum applications [16, 38]. To counteract these errors, implementing quantum error
correction (QEC) is essential, paving the way to the framework for fault-tolerant computation [41].

However, QEC is highly resource-intensive [6, 35] and is estimated to consume up to 90% of the resources.
For example, surface code [5, 8, 27], the most widely used QEC code, requires a large number of physical qubits
to encode a single logical qubit, referred to as a tile [23]. In addition, numerous ancilla tiles are needed to
perform logical operations. Executing a CNOT gate requires ancilla tiles to provide the communication resources
[12, 21]. Likewise, implementing a T gate demands both communication resources and ancilla tiles for magic state
preparation [10, 32]. If communication resources are sufficient, the circuit can be executed efficiently. Otherwise,
communication congestion occurs, leading to delays and waiting times [49]. The qubit resource requirements of
circuits can vary significantly depending on their operation patterns. In circuits with sparse operations, where
only a few operations are executed simultaneously, increasing qubit resources may not reduce execution time. In
contrast, adding communication resources can effectively minimize delays for circuits with dense operations.

Nowadays, the mainstream way to use quantum computers is through quantum cloud services [9, 24], primarily
due to quantum devices’ high prices and maintenance complexity. To provide efficient quantum services in the
cloud, optimizing compilation on a given chip is not enough. It is also essential to select the most suitable chip
for a given circuit. This integrated workflow ensures better qubit utilization, significantly boosting the overall
throughput of the quantum cloud platform.

Therefore, the quantum circuit execution process on the quantum cloud can be divided into two steps: selecting
an appropriate chip and transforming the circuit on the chip. During the chip selection phase, the selector
analyzes the circuit’s characteristics and selects the most suitable chip, minimizing the cost of executing the
given circuit. We define this cost-as Circuit Execution Cost, the time-space cost of the circuit’s execution. Once
an appropriate chip is selected, the transformer aims to reduce the circuit’s execution time. The transforming
phase can be further divided into initialization and scheduling. In initialization, the transformer assigns tiles
to each logical qubit and establishes communication channels. In scheduling, the transformer determines the
precise execution plans for each operation. Most operations can be performed within the tiles [12], except the
T and CNOT gates. The overhead of preparing magic states has been considerably reduced through extensive
research efforts [10, 32]. However, communication-induced delays can be substantial, significantly degrading
both the fidelity of execution results and overall system throughput. Communication, specifically the execution
of CNOT gates, can be simplified as constructing a path between the two involved tiles, regardless of the specific
encoding scheme, i.e., double defect model [12] or lattice surgery model [4]. Logical qubits are represented as
small boxes in Fig. 1, and channels are the residual regions used to establish the paths (depicted by the lines).
CNOT gates can be completed within two cycles regardless of the path length. Simultaneous execution of CNOT
gates requires non-intersect corresponding paths.

Many works [4, 21, 23] focus on building CNOT gate paths to reduce the latency caused by path conflicts.
However, they overlooked a crucial aspect: In surface code encoding, the function of tiles is software-defined,
whether they are used as logical tiles or communication resources. The transformer can customize the initialization
of chip resources to reduce circuit execution time. Moreover, different circuits require different resources. A chip
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selector is needed to assign the suitable chip for each circuit for quantum cloud platforms with multiple types of
chips.
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Fig. 1. Motivation example: a logical quantum circuit and its corresponding surface code encoded circuit. In this example, we
choose to execute the circuit on Chip 2, where the execution can be completed in 2 cycles.

Motivation Example: As illustrated in Fig. 1a, five independent gates are ready for execution. Each gate’s
execution path requires a specific width of physical qubits. There are three different types of chips available
(Fig.1b). For Chip 1, the circuit requires a minimum of four cycles to execute. In contrast, for Chip 2, the circuit
can be completed in 2 cycles under optimal scheduling, with better allocation of communication resources.
Although Chip 3 offers more qubit resources, the demand for resources is already saturated, resulting in no
reduction in execution time. Therefore, Chip 2 is selected, with resource-customized initialization considered
during scheduling.

In this paper, we address the problems of chip selection and surface code circuit mapping and scheduling.
We first characterize circuit features and select the appropriate chip based on these characteristics. Next, we
propose a chip selector and a resource-adaptive transformer, Ecmas+, which minimizes circuit execution cost
and executing time. Our contributions are summarized as follows:

o We formulate the chip selection problem for surface code execution on multi-chip quantum systems and
formulate surface code circuit mapping and scheduling problems in double defect and lattice surgery
models:

o We define two novel metrics to characterize both circuit demands and chip capacities and further propose
the Circuit Execution Cost metric to capture the time-space trade-off of a quantum circuit.

e We present a resource-adaptive compilation framework Ecmas+ composed of:

— A chip selector, which evaluates candidate chips and selects a cost-effective one based on circuit features.

— A circuit transformer, which customizes chip resource initialization and extends compilation to a
universal gate set (CNOT, H, T, and Pauli).

With sufficient physical qubits, Ecmas+-ReSu offers efficient, performance-guaranteed compilation results.
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e We evaluate Ecmas+ for circuits from IBM Qiskit [36], QASMbench [30], etc. Ecmas+ eliminates 46% of
the execution time on average compared with Autobraid [21] for the double defect model. Ecmas+ could
find the optimal result for most benchmarks for the lattice surgery model. Compared with EDPCI [4],
Ecmas+ can achieve optimizations on average 29.7%.

The subsequent sections of this paper are arranged as follows. Section 2 lays the groundwork with an in-
troduction to the necessary background. We then formulate the problem of chip selection and surface code
mapping and scheduling in Section 3. Our methodologies are presented in Section 4, followed by an evaluation of
their performance in Section 5. Related work is reviewed in Section 6, followed by discussion and conclusion in
Sections 7 and 8.

2 Background
2.1 Quantum Error Correction

Quantum programs can be described by the quantum circuit model, which consists of a sequence of quantum
gates performed upon a collection of qubits. Qubits are fundamental units in quantum computing that can be
represented by a normalized vector. Quantum gates are unitary operations that operate on qubits. A universal
gate set, such as X, Y, Z, H, T, and CNOT gates, can combine arbitrary quantum circuits.

However, quantum computers are inherently susceptible to noise from environmental interactions and to
inaccuracies in operations. Thus, quantum error correction (QEC) codes are essential for constructing fault-
tolerant quantum computing systems. These codes enhance information redundancy by encoding a logical qubit
into multiple physical qubits, thereby increasing reliability. The noise of the quantum system appears not only in
the communication process but also in the computation process: Hence, the reliability of quantum circuits is
heavily dependent on the safeguarding offered by QEC. It is essential for QEC protocols to detect and correct
errors periodically during the execution.

Magic state factory
a a3 91 |92 q1 |92 91 |92
d3 |a4 d3 |94 93 |94 3 |94
(a) H gate (b) T gate (c) CNOT gate

Fig. 2. Surface code model: physical qubits and
simplified representation of chip. Fig. 3. Surface code encoded operations in the lattice surgery model.

2.2 Surface Code

Among various QEC codes, surface code is a prominent candidate for achieving fault-tolerant quantum com-
putation in superconducting implementations. It has a high threshold of around 1% and alignment with 2D
architectures, making it a feasible error correction code for practical demonstrations on real machines [2, 28, 48].

As shown in Fig. 2, surface code is realized on a 2D lattice of physical qubits, including data and measurement
qubits. Data qubits (the white circles) store quantum states, while measurement qubits (the purple and green
circles) identify error occurrences. Physical qubits can be divided into computation and communication resources
at the logical layer. The computation resources are the physical qubits, which are encoded as logical qubits and
simplified into small boxes. The remaining qubits on the chip are ancilla qubits utilized to construct paths for
executing the CNOT gate communication.

Surface code can be classified as the double defect model [12] and lattice surgery model [4] based on the
different approaches to creating logical qubits. During the execution, measurement circuits are periodically
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executed to detect errors. The time for executing one measurement circuit is called a surface code cycle. Code
distance d is an important parameter in QEC codes. As d increases, more physical qubits are used to encode a
single logical qubit with lower error rates for each logical qubit. Execute a quantum circuit under surface code
protection, requiring all logical gates to be transformed into their surface code-encoded forms.

Pauli gates: Pauli gates are X, Y, and Z gates, which can be executed inside the tiles within one surface code
cycle. In practice, these gates are usually handled entirely by the classical control software [12] rather than
physically implemented on a quantum computer, reducing the noise and execution cost that physical operations
introduce. Given that the execution time of these gates is constant with respect to the code distance d, and
considering that these gates are predominantly executed in software, we will ignore their execution times in
subsequent comparisons of results.

H gate: The H gate can be executed locally, only involving the surrounding ancilla tiles. Different operational
schemes may exhibit subtle differences in execution time and the extent of the tiles involved. In this paper, we
proceed with the H gate as follows. The lattice surgery model requires 2 X 2 tiles and three cycles, that is, 3d
surface code cycles, as shown in Fig. 3a. During the whole compilation procedure, parameter d remains consistent;
hence, we designate cycle as the unit of execution time, with the definition of one cycle being equivalent to d
surface code cycles. The H gate can be executed inside the tile with 3 cycles for the double defect model.

T gate: The execution of the T gate consists of two parts: preparing magic states through a magic state factory
and executing the magic state injection circuit (CNOT gate) between the prepared magic states and the involved
tile. This paper assumes an abundance of magic states surrounding the chip, as shown in Fig. 3b. At any given
moment, we can access a sufficient quantity of magic states at the edge of the chip.

CNOT gate: CNOT gates are implemented differently across encoding models. For the lattice surgery model,
performing a CNOT gate means finding a Bell state path between the tiles corresponding to two qubits [4]. As
shown in Fig. 3¢, paths of arbitrary length require two cycles, and paths executed within the same cycle cannot
intersect. For the double defect model, executing a CNOT gate requires finding non-intersecting paths between
tiles, and the execution time of the path is independent of its length. One distinction to be aware of is that each
tile has an additional attribute called cut type. Each tile is initialized into one of two cut types: X-cut type or
Z-cut type. Executing CNOT gates between tiles of different cut types requires two cycles, whereas executing
CNOT gates between tiles of the same cut type requires six cycles. In addition, we can spend six cycles to change
the cut type of each tile.

3 System Model and Problem Formulation

In this section, we formally define the chip selection and surface code mapping and scheduling problem for both
double defect and lattice surgery models and demonstrate its complexity under the double defect model.
Quantum Circuit: We consider an input quantum circuit P with n logical qubits (Fig.4a). This circuit can be
represented as a weighted directed acyclic graph Gp = (V, E, W) (Fig.4b), where vertices represent quantum gates
and edges denote gate dependencies. Each node v; is assigned a weight that represents the gate execution time
w; in the surface code model. The critical path length of Gp is circuit depth, denoted by «. To better characterize
the circuit depth under surface code encoding, we introduce surface code weighted circuit depth (e). This metric
is defined as s = max Z{'C:o w;, where w; is the weight of node v; along a path from the root to a leaf node,
path = (v1,0,...,0;).

Quantum Chip: We assume the quantum chip adopts a 2D lattice topology, denoted as Ly, xm,—a grid of m;
rows and m; columns of physical qubits. To decouple our framework from hardware-specific parameters (e.g.,
error rates), we abstract this lattice into a tile-level model. Each logical qubit is mapped to a tile, a square region
of physical qubits, denoted as T, where (a, b) is its upper-left coordinate. Communication between tiles occurs
via channels, where each lane represents a unit of bandwidth capable of supporting one independent CNOT path.
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The number of lanes in a channel defines its bandwidth, and the chip bandwidth is the minimum bandwidth
among all channels.

The physical size of each tile and the width of each lane depend on the encoding model. As illustrated in Fig. 5, for
the double-defect model, each tile occupies a 5d X 5d area, and each lane requires 2d physical qubits. Additionally,
in this model, each tile is associated with a cut type. We use Cut; to represent the cut type of tile T;. In the lattice
surgery model, the tile and lane dimensions are [V2d] x [V2d] and V2d], respectively. The parameter d is the
code distance.
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Fig. 4. Representations of the quantum circuit: (a) logical

quantum circuit, (b) weighted DAG representation. Fig.5. Quantum Chip: (a) double defect model, (b) lattice

surgery model.

Surface Code Encoded Circuit: The encoded circuits PS should satisfy the following two constraints. First,
the execution scheme should be equivalent to the logical circuit, i.e., all gates are scheduled, and the scheduling
order is consistent with the topological sort of gates in Gp. Second, the CNOT paths of the gates executed in
the same cycle do not intersect. The execution time of a circuit is A X.d X 7, where A is the cycle number and ¢
is the execution time of each surface code cycle. Since d and 7 have the same effect on different mapping and
scheduling methods, we simplify the execution time as cycle number A.

Surface Code Mapping and Scheduling Problem: Given an input quantum circuit P, a specific quantum
chip L, xm, and the required code distance d, find an initial mapping and the execution scheme that satisfy the
surface code circuit constraints with the cycle number of the circuit Aps be minimized.

3.1 Chip Selection

Circuit Execution Cost: We define the time-space resources required to execute a quantum circuit on a given
chip as its Circuit Execution Cost, which is the product of the number of qubits used and the circuit’s minimum
execution time. In this work, we assume that only one circuit can be executed on a chip at a time. Consequently,
the qubit resources allocated to the quantum circuit are considered the total qubit resources available on the chip
it occupies.

ProBLEM 1. Chip Selection.
Input: An input logical circuit P, a code distance d and a list of available 2D lattice chips Ly, Ly, ...L,.
Output: Chip L; in chip list with which P has the minimal Circuit Execution Cost.

3.2 Transformation in Double Defect Model

ProBLEM 2. Initialization Problem for Double Defect.
Input: An input logical circuit P, a 2D lattice chip L, xm,, the required code distance d, and a natural number k.
Output: Whether there is an initial tile mapping Tnapping = {qi — (Tap, Cut;)} such that the number of cycles of

the optimal surface code encoded circuit P(SJPT is upper bounded by as + k, namely, APoer < as + k.

ACM Trans. Arch. Code Optim.
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ProBLEM 3. Scheduling Problem for Double Defect.
Input: An input logical circuit P, a 2D lattice chip Lyixmz and an initial tile mapping Trapping.

Output: A surface code encoded circuit P5 with its number of cycles AP * minimized.

Hardness: Zhu et al. [49] proved that the complexity of surface code mapping and transforming problem is
NP-hard for the double defect model.

3.3 Transformation in Lattice Surgery Model

ProBLEM 4. Initialization Problem for Lattice Surgery.
Input: An input logical circuit P, a 2D lattice chip Ly, xm,, the required code distance d and a natural number k.
Output: Whether there is an initial tile mapping Tnapping = {qi — Tap} such that APoPr < as + k, namely, the
number of cycles of the optimal surface code encoded circuit PSPT is upper bounded by as + k.

ProBLEM 5. Scheduling Problem for Lattice Surgery.
Input: An input logical circuit P, a 2D lattice chip Ly, xm, and an initial tile mapping Tmapping.-

Output: A surface code encoded circuit P° with its number of cycles AP° minimized.

Hardness: Herr et al. [19] demonstrated that the complexity of surface code mapping and transforming problem
is NP-complete for the lattice surgery model.

4 System Design

To improve the throughput of quantum cloud platforms, it is essential not only to optimize the execution time of
circuits but also to strike a balance between the number of qubits used and the execution time. Our framework,
Ecmas+, not only maximizes resource utilization on a given chip to minimize circuit execution time but also
selects appropriate chips for circuits when multiple options are available on the quantum cloud platform. To
achieve this, we carefully analyze circuit features and introduce a new metric, Circuit Execution Cost, to quantify
the quantum resources consumed during circuit execution, which aids in evaluating chip selection quality. Once
a chip is selected, our transformer assesses whether the available qubit resources meet the requirements based
on the characteristics of both the circuit and the chip. Depending on resource availability, we design different
algorithms to transform the circuits efficiently. When sufficient physical qubits are present on the chip, Ecmas-+-
ReSu can achieve shorter transformation times while ensuring performance guarantees. An overview of our
comprehensive tool flow is shown in Fig. 6.

quantum circuit sufficient

circuit profiling reources transforming

> sufficiency
determination

quantum chip chip limited
chip lists selecting profiling transforming

Fig. 6. Overview of Ecmas-+.

4.1 Quantum Circuit Profiling

Quantum circuits vary in communication resource demands. To better meet the requirements of the circuit, we
analyze its characteristics, focusing on the following key metrics:
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(1) Number of qubits n: This metric denotes the total count of qubits present within the quantum circuit.

(2) Logical circuit depth « and Surface code weighted circuit depth a,: These parameters estimate the
minimum execution time necessary for the circuit’s operation.

(3) Rate of different gates: This aspect encompasses the frequency and quantity of various types of quantum
gates utilized within the quantum circuit, as well as the overall gate density. As an example, the CNOT
gate rate is defined as r¢por = grf;‘;: where gcnor represents the number of CNOT gates.

(4) Peak communication demand: We introduce Circuit Parallelism Degree (denoted as PM) to characterize
the maximum demand of communication resources of a circuit. This factor is a critical constraint in
determining whether the execution of the quantum circuit can achieve an optimal solution. The definition

of Circuit Parallelism Degree varies slightly depending on the model, with more specific definitions.

DEerINITION 1. Gate partition 7

For a quantum circuit Gp = (V, E, W), we construct a new graph G, = (V', E") by replicating each nodeo from the
set V, w, times, resulting in the nodes v1,vs, . . ., 0.,,. These nodes are ordered such that vy > vy > -+ > v4,. For each
edge (u,v) € E from the graph Gp, the corresponding nodes in the new graph must satisfy the following condition:
Uy > U1, Tespectively. Given the graph Gy, a partition r is to divide the set V' into o, disjoint sets V1, Vs, ..., Vy,
such that foru € V; andv € V;, if (u,0) € E’, theni > j. And nodes vy, v, .. ., 0, which are replicated from the
same original node v, must be allocated to adjacent subsets. For example, if vis in subset Vj, then vy, . . ., v,,, must be
placed in subsequent subsets Vi1, ..., Vjpy,—1.

DEFINITION 2. Circuit Parallelism Degree of double defect model
PM = min, max;®, feno: (Vi) + f; (Vi) for all possible partition 1t , where fenor(V;) is the number of CNOT gate in
set V; and fr(V;) is the number of T gate in set V;.

DEFINITION 3. Circuit Parallelism Degree of lattice surgery model
PM = min, max;*, length(V;) for all possible partition 7, where length(V;) is the number of gate in set V;.

Finding PM is equivalent to given n tasks and their precedence constraints, minimizing the number of machines
used while the whole schedule is of minimum length. Finke et al. [11] has proved that this is NP-complete. We
propose a heuristic Algorithm. 1 to find the circuit’s estimated Circuit Parallelism Degree PM and the execution
schema &. Our method uses layers to keep track of the execution order of gates, where &[i] represents the
operations to be performedin the i-th layer. For any gate i, we record two high and low values to denote the
highest and lowest layers in which the gate can be scheduled. Layers are determined by the gate’s parents and
children nodes as shown in Line 4 - 9. Then, we calculate the difference value of each gate and choose the
gate with the smallest difference value (Line 10 - 13). For this gate, we schedule it to the layer with the smaller
fgate to execute in all the possible layers. For double defect model, fyare(E[i]) = feno: (E[i]) + fi(E[i]), and
foate(E[i]) = length(E[i]) for lattice surgery model. After that, we update the low and high values of each gate.
We repeat this process until all the gates are scheduled. The maximum fy.sc(E[i]) among all layers is PM of this
circuit.

4.2 Quantum Chip Selecting

The chip resources discussed here primarily focus on communication resources. We follow the settings from
previous studies [4], where magic state factories are placed at the chip boundaries, and magic states are assumed
to be abundant. Here, we use the lattice surgery model as an example. Since H-gates are executed within the tile
in the double defect model, it is equivalent to the lattice surgery model with the same number of CNOT and T
gates but no H-gates.

Finding the trade-off between the qubit resources and the execution time is not straightforward. To address
this challenge efficiently, first, we analyze the relationship between circuit depth «, gate rates r, chip size, and

ACM Trans. Arch. Code Optim.



Ecmas+: Efficient Circuit Mapping and Scheduling for Surface Code Encoded Circuit on Quantum Cloud Platform « 9

Algorithm 1: Circuit Profiling
Input: Quantum Circuit P;
Output: Circuit Parallelism Degree PM and Execution Scheme &;
1 &=[]"Agys
2 G, = unscheduled gates;
3 while G, # 0 do
4 high[i], low[i], differencel[i] = [0]xP.gate_num;
5 for gate; «— gates_topo.begin() to gates_topo.end() do
6 L low([i] = max (low[gate;.parents] + gate;.parents.weight);

7 for gate; «— gates_topo.end() to gates_topo.begin() do
8 L high[i] = max (high[gate;.children] + gate;.children.weight);

9 difference[i] = Ag, - low[i] - highl[i];

10 Find gate; with minimal difference;
11 Find Layer j with minimal Zf‘qatei'“me foate(EL]]);
12 for index in range(gate;. weight) do

13 L &[j+index].append(i);

14 Gy delete gate;

15 m = maxiA:C(;Pféate(a[i]);
16 return PM and &;

the chip aspect ratio. To explore how these factors influence execution time, we generated 20 random quantum
circuits for each set of circuit characteristics. Each circuit consists of 64 qubits. For instance, a circuit named
"cnot5-h5-a10" refers to a random circuit with a depth of 10, where each layer contains, on average, 5 CNOT
gates and 5 H gates. By transforming these circuits on different chip configurations, we aim to observe trends in
execution time based on varying circuit depths, gate densities, and chip properties. As shown in Fig. 7, the results
indicate the following key patterns:

(1) Logical depth independence. The solid and dashed lines in each graph represent the same trend, showing
the average results for circuits with depths of 10 and 20, respectively.

(2) T-gates perimeter-sensitive. When the T-gates are dense, increasing the chip’s perimeter rapidly reduces
the circuit’s execution time. The main reason is that we assume magic states are obtained from the chip’s
edge, so the perimeter directly impacts the efficiency of accessing them.

(3) CNOT gates size sensitivity. When CNOT gates are dense, the execution time decreases with increased
chip size but increases as the chip becomes more elongated.

(4) H gate smoothing effect. In cases where H-gates are mixed with other gate operations, the overall trend
in execution time remains unaffected.

Based on the above observations, we propose a chip selection algorithm. We begin by filtering out chips that do
not satisfy the logical qubit mapping requirements. Since the execution time scales roughly linearly with circuit
depth, the relative ordering of chip performance remains stable regardless of the actual depth. This allows us to
reduce the evaluation cost by using shallow circuits with the same gate rate. Specifically, we generate sample
circuits with a depth of 10, matching the original circuit in both gate type ratios and qubit count. We then compile
these samples on candidate chips and select the chip with the lowest Circuit Execution Cost as the preferred one.

ACM Trans. Arch. Code Optim.



10 « M. Zhuetal

cnotl0-a10 —e-- cnot20-al0 —e-: cnot30-a10 cnot5-h10-a10 —e-- cnot5-h50-a10 —e-- cnot25-h10-a10
cnotl0-a20  —<— cnot20-a20  —<+— cnot30-a20 cnot5-h10-a20 —<— cnot5-h50-a20  —< cnot25-h10-a20
— —_ —_ 300
5 60 ES 125 2
I a0 100 )
5 100 100 2003 B, 100 200 5
240 S 8 S
0 o s 0
4] I~ 4] 3 75 9
g vy = \\*-...-. T )\ CEPN L 1008
L ]
[P [CNe) 50 O
A ah oD s 9 ) IR I IR I e L C S S S S| I IRAN e
U P ot 0?8 »,*0 AU RS x“fmx";&«f’n{\ﬁ A P W o S 5@? FUPL RS \}}w{{pﬁm\’«g
Chip Size Chip Aspect Ratio Chip Size Chip Aspect Ratio
(a) circuits with CNOT gates (b) circuits with CNOT and H gates
t20-a10  —e-- t40-a10 —e-- t60-al0 —e-- cnot5-t10-a10 —e-- cnot5-t50-a10 —e-- cnot25-t10-a10
t20-a20 —< t40-20 —< t60-a20 —<— cnot5-t10-a20  —<— cnot5-t50-a20  —<— cnot25-t10-a20
5 S oS 150 3
CI.T’ 80 150 80 150% % 100 ﬁ
S 60 60 s 38 100 —e[20s
2 100 1000 o o t” 0
el 40 _ 40 ) 50 1009
O 20 ==4750 3 50 5 Oypleee—eooooo—al0 ©
I - C R S S C R | 2 & 0D A DDA WL C R S C e | 2 & 9 D DA A
AR L N g L ,;@ U Oﬂx”‘ﬁx‘ﬂxﬁﬁ VP W (W 5 3*\’1"3& P x¢¢x’§mx‘;m \:\;\,
Chip Size Chip Aspect Ratio Chip Size Chip Aspect Ratio
(c) circuits with T gates (d) circuits with CNOT and T gates
h20-a10  —e- h40-q10 —e- h60-al0 h10-t10-a10 —e-- h10-t50-a10  —e-- h50-t10-a10
h20-a20 —< h40-a20 —<+ h60-a20 h10-t10-a20 ~ —<— h10-t50-a20 =< h50-t10-a20
s S S8 80 s
S 62 31 628 3 159 1509
I I I I
3 ) s 60 60 5]
o 30 60 30 607 " < 100 10077
o 9 Pq0 40 = L
$ 29 58 29 588 % =- S
9 3 Ty ettt —al50 5 50 3
A ok SRS N | & 0D A DDA A b a3 a8 SRR CRIP WP SN
’g*’& 1&4 3,5*3 m\*h m@*h 61*6 o;'\? (;b P q,,(‘; \’\:;L\:gw\j;w{\,,«, \,1*\’ ,L,;'L 3,5{5 b.&*“ bﬂ*& 6,‘*6 0;0 c;b P gﬂ \/C"L\:’;a,\’q'b \:\*\,
Chip Size Chip Aspect Ratio Chip Size Chip Aspect Ratio
(e) circuits with H gates (f) circuits with T and H gates

Fig. 7. Impact of circuit depth and gate density on execution time across different chip configurations.

While this approach reduces the cost per sampling, the overhead may still be high when the number of available
chips is large. To further improve efficiency, we introduce an analytical chip preselection method. Based on
circuit characteristics, we first estimate the preferred chip aspect ratio: for circuits with more T gates, chips
with longer perimeters may be more suitable due to higher demand for magic state communication, whereas
CNOT-heavy circuits may benefit from more square-shaped chips that reduce average communication distances.
Next, leveraging our resource saturation analysis (detailed later in Section 4.3), we derive an upper bound on the
chip size beyond which additional resources yield diminishing returns. Within this bounded region, we apply
binary or ternary search to efficiently locate a cost-effective chip.

4.3 Quantum Chip Analyzing

Once the chip is selected, it is time to profile it. We define the Chip Communication Capacity C to characterize
the number of parallel gates supported by a chip, denoted as C. We provide proof showing that the Chip
Communication Capacityis at least L%J + 3 for a chip with bandwidth b.

DEFINITION 4. Chip Communication Capacity:
Given a quantum chip, C is the max number u that for any u independent gates with an arbitrary placement of
tiles, there exists a simultaneous execution schema for all gates.

PROPOSITION 1. For a chip with bandwidth b, C is always less than 4b + 2.

ACM Trans. Arch. Code Optim.
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Proof:

We prove this result by contradiction. Consider a square chip with side length (2k + 2)(b + 1) + b tiles, among
which (2k + 2)(2k + 2) are designated data tiles for logical qubits, as illustrated in Fig.8. Each channel between
adjacent tiles has a communication bandwidth of b.

Now, construct a set of 4b + 2 independent CNOT gates, specifically: 2b + 1 gates between tile pairs (A;, B;),
fori=1,...,2b+ 1, and 2b + 1 gates between tile pairs (C;, D;), fori =1,...,2b + 1.

We categorize the chip’s communication channels into internal channels (plain white) and peripheral channels
(shown with gray diagonal lines). Suppose the horizontal CNOTs (A;, B;) and vertical CNOTs (C;, D;) are all
routed through internal channels. In that case, their paths will inevitably intersect, causing conflicts.

To avoid this, some gates must be rerouted via peripheral channels. However, the grid’s left and right channels
together provide only 2b peripheral horizontal paths (similarly, top and bottom for vertical paths), due to the
bandwidth constraint. As there are 2b + 1 vertical (or horizontal) CNOTs to route, at least one of them must still
traverse an internal channel, resulting in a conflict with a gate routed in the other direction.

Therefore, it is impossible to execute 4b + 2 independent CNOT gates without exceeding the available commu-
nication bandwidth. This contradicts our assumption, and we conclude that C < 4b + 2.

e T e T Bl N
A 1 [ [ [l 1NBA
] [ ] ] CH 1,
Poed 1 [ C AT N Bo

LD L Bl [l D [ |

Fig. 8. A counterexample of Chip Communication Capacity

THEOREM 1. For a chip with bandwidth b, any L%J + 3 gates can be executed within the same cycle.

Proof: As stated in Theorem 2 of previous work [49], for a chip with bandwidth b, a simultaneous path schedule
exists for I_%J + 3 CNOT gates, regardless of the operand qubit placement. This result can extend to a universal
gate set, as T and H gates consume communication resources equivalent to CNOT gates. Magic states are generated
at the chip boundary, and the chip’s perimeter limits their delivery to the central region per cycle. However, this
constraint is easily addressed, as the perimeter is necessarily larger than C, according to Proposition 1.

Q| [a,] [a; Q| |9, ds

A4 95|96 9] |9 KQG

CABLUBL 97| |98 [qs
(@) (b) (o)

Fig. 9. Tile location mapping process: (a) shape determining, (b) mapping establishing, and (c) bandwidth adjusting.

ACM Trans. Arch. Code Optim.



12 « M. Zhuetal.

4.4 Resource Sufficiency Determination

To achieve efficient transformation, we discuss our strategies under two conditions: sufficient and limited
resources. We define sufficient resources as a scenario where circuit execution proceeds without delays due to
path conflicts. Otherwise, it is considered a case of limited resources.

In chip characterization, our capacity calculations rely on the chip’s minimum bandwidth b. Thus, when given
a quantum circuit P with n qubits and a chip Ly, xm,, the first task is determining the chip’s maximum minimum
bandwidth b under these conditions.

. mp —t. X1 my — t X 1]
b:maxmm“ J,{
te.tr (te+ 1) X prad Lty + 1) X pryg

Here, ¢, and t, represent the column and row numbers of the logical tile array, respectively, #; is the side lengths
of each tile, and p,,q is the width of the path. We can confirm that the situation can be classified as ‘sufficient
resources’ when this lower bound L%J + 3 exceeds the circuit’s PM. Otherwise, we classified it as ‘limited
resources’.

J} subject to t, X t, > n.

4.5 Initialization

4.5.1 Location Initialization for Sufficient Resources. In this case, the location initialization strategy is straight-
forward: allocate logical tiles and communication resources based on the configuration that maximizes chip
bandwidth (as shown in section.4.4). The logical qubits can then be mapped to the logical tiles arbitrarily.

4.5.2  Location Initialization for Limited Resources. When resources are limited, we employ the following three
steps to generate a preferred tile location mapping.

Shape Determining. First, we determine the shape of the logical tile array, e.g., whether to initialize it asa 3 X 3
array or a 2 X 5 array for a circuit with nine logical qubits when both schemes are available on the chip. Then, we
select an array shape with greater channel bandwidth. Among the options shown in Fig. 9a, we choose the 3 x 3
tile array.

Mapping Establishing. Secondly, We map each logical qubit to its corresponding logical tile according to
communication cost, as shown in Fig. 9b. For the lattice surgery model, the communication cost is f = 3}; ; yi j X
lij + 2; §i X k;, where [; j represents the Manhattan distance between the two tiles T;, and T}, y; ; is the number
of CNOT;; in the circuit and {; is the number of T gate to be executed on tile T;, and k; is the minimum distance
from tile T; to the chip boundary. Intuitively, mapping qubits that frequently communicate together can reduce
the communication cost. Here, we employ the Metis [26] method, an iterative graph partitioner, to generate
mappings based on the qubit communication graph G¢ and tile array. The communication graph G¢ is used
to capture the communication requirements between logical qubits, where vertices represent qubits and edges
denote CNOT operations. Edge weights reflect the frequency of CNOT gates between qubit pairs. Due to the
stochastic steps in the mapping generation, we generate multiple mappings and select the one with minimal
communication cost.

Bandwidth Adjusting. Finally, we assign the rest of the qubit resources to each channel based on their occupancy
status, as illustrated in Fig. 9c. We pre-execute each gate in the circuit to record its shortest path without
considering the non-intersecting restrictions. Then, we increase the bandwidth of busy channels.

4.6 Scheduling for Lattice Surgery Model

Similar to the initialization process, we discuss the scheduling algorithm based on two types of resource availability.
In the ‘sufficient resources’ case, the lattice surgery model can achieve an optimal solution with the method
outlined in proof of Theorem 2 in Ecmas[49] to determine the corresponding paths for these gates becomes
feasible.
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Algorithm 2: Lattice Surgery Scheduling for Limited Resources

Input: Quantum Circuit P and Chip Ly, xm,;
Output: Encoded Circuit PS, M_location;

1 tile_array = Tile_shaping (Lp, xm,);

2 Mappings = Metis (Gc);

3 M_location = Select (Mappings, cost function);

4 while Gp not empty do

5 gates = Gp.ready_gate;

6 gates_pri = priority (gates);

7 H,yeight (chip.now);

8 for g; « gates_pri.begin() to gates_pri.end() do

9 if g; is CNOT gate then
10 if path (gate, chip_now) then
11 PS .add(shortest(path ));
12 L chip_now.update;
13 if g; is H gate then
14 H.change_weight(chip_now);
15 if path (gate, chip_now) then
16 PS add(least congested(path));
17 L chip_now.update;
18 if g; is T gate then
19 for magic_state in exist magic state factory of chip_now do
20 L chip_now.add(virtual,magic_state);
21 if path (gate, chip_now) then
22 PS.add(least congested (path));
23 L chip_now.update;

24 return P5, M_location;

4.6.1 Lattice Surgery Scheduling for Limited Resources. When the resources of physical qubits are limited, finding
non-intersecting paths of all gates per cycle is difficult. In such cases, we need a method to assign priorities
and determine the execution order for these gates. We assign priorities to these gates to reduce latency at the
bottleneck. The priority of a gate is determined by the number of remaining gates (how many gates depend on it)
and criticality (the length of the critical path of the remaining gates). Gates with higher criticality are prioritized.
When two gates have the same criticality, we select the gate with more remaining gates to allow more gates to
execute earlier to utilize non-congested cycles better. The execution process varies depending on the operation.
CNOT gate: Executing the CNOT gate is to find a path between the two tiles. If no path exists, the gate waits
until the next cycle. If multiple paths exist, one is randomly selected from the shortest available paths (Line 11 in
Algorithm. 2).

T gate: The implementation of a T gate can be decomposed into two steps. First, generate magic states in the
magic state factory. Second, a CNOT gate will be executed between the factory and the tile where the T gate
should applied. In this paper, we assume that magic states can be obtained from the boundaries of the chip when
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a T gate operation is to be performed. Unlike the CNOT gate, which requires a path between two specific tiles, all
magic state factories are equal for the T gate. Thus, establishing a path between the specific tile and any factories
can execute the T gate (line 22). Therefore, during the execution of a T gate, we construct a virtual magic state
node and establish a pathway between this virtual factory and the specific tile as shown in Fig.10a.

H gate: The H gate requires occupying three adjacent tiles within its vicinity, whereas other gates have multiple
possible paths for execution. Given this, at the beginning of each execution cycle, when the set of ready gates
includes H gates, we enhance the weights of the eight vicinity tiles (line 14) as shown in Fig.10b. This strategy
reduces the likelihood of these tiles being selected for executing other gates.

i1 Dataftile involved in T gate

|:| Virtual supernode of magic states D Data tile involved in H gate

O Magic states I:‘ Enhanced-weight ancilla tile

@ (b)

Fig. 10. Schematic of T and H Gate Execution: (a)routing of T gate using a virtual supernode; (b)resource-aware scheduling
for H gate.

The time complexity of the algorithm is O(Gy - m; - mz), where Gy is the number of gates in the quantum
circuit, and m - n is the total number of physical qubits on the chip. For each gate, the algorithm requires at most
O(m;y - my) time: for T or CNOT gates, it performs a path search over up to O(m; - my) candidate nodes; for H
gates, the overhead is lower, involving a check over four possible options.

4.7 Optimizations for Double Defect Model

Previous works, such as Braidflash [23] and Autobraid [21], do not consider the cut type by assuming all tiles have
the same cut type. However, cut type is critical in transforming the double defect model, providing a significant
opportunity to reduce the time on the table. For a CNOT gate, it takes three cycles to be executed if two involved
tiles are of the same cut type, but only one cycle when cut types are different.

4.7.1 Cut Type Initialization. The goal of the cut type initialization is to enable the execution of as many CNOT
gates as possible within a single cycle. We construct a qubit communication graph where each node represents
a logical qubit in the circuit, and an edge exists between two nodes if a CNOT gate is applied between the
corresponding qubits. If the qubit communication graph is bipartite, we assign the same cut type to the logical
qubits in one set. This is the optimal cut type initialization, with which all CNOT gates can be implemented in
one cycle.

For circuits whose qubit communication graph is not bipartite, we propose a greedy algorithm that satisfies
the requirement for a cut type for gates executed earlier. We construct a sub-graph of the qubit communication
graph, adding the gates with no precursor in the current DAG into the sub-graph and removing these gates in
the DAG. We repeat these two steps until the sub-graph is no longer bipartite with the newly added edges. The
logical qubits belonging to the same set in this bipartite sub-graph are initialized to the same cut type.

4.7.2  Double Defect Scheduling for Sufficient Resources. When physical qubit resources are sufficient, we adopt
the methods in Section 4.6 to determine the tile location mapping and gate schedule scheme. The key idea for cut
type initialization and scheduling is to make all CNOT gates execute in one cycle by remapping the cut type.
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We propose the cut type scheduling algorithm as shown in Algorithm. 3 with execution flow is as follows.
Firstly, we construct the qubit communication graph by sequentially adding edges from the execution scheme
until it is no longer bipartite. Then, we use this bipartite graph to initialize the cut type for executing this
sub-circuit. When the operand tiles of CNOT gate are of the same cut type, our methods spend three cycles to
modify the cut type to the new mapping found in the same way above. These two steps are iterated until all the
gates have been scheduled. We provide the cut type scheduling algorithm with a 5/2-approximation guarantee
[49].

Algorithm 3: Double Defect Scheduling for Sufficient Resources
Input: Execution Scheme &;
Output: Encoded Circuit PS | initialization;
now_step = 0;

[

2 initialization = None;

3 while i < E.length() do

4 while G is bipartite graph do

5 for gate «— &[i].begin() to E[i].end() do
6 L G.add_edge (gate);

i++;

8 M, = bipartite (G);

9 if initialization # None then

10 ‘ PS.add (change mapping to M,);
11 else

12 L initialization = M,;
13 for j < now_step to i do

14 find braiding_paths (E[j]);
15 PS.add (§[j]);
16 | now_step = i

17 return PS, initialization;

4.7.3 Double Defect Scheduling for Limited Resources. When two tiles involved in a CNOT gate are of the same
cut type, we estimate the impact of modifying the cut type by calculating the M-value of each tile, specifically
M-value = M; + 0 X M. M; denotes the impact on execution time. It takes three cycles to execute the operation
directly and four cycles with the cut type modification. If this tile was idle previously, the modification operation
can be performed earlier to reduce the time cost. M denotes the impact of the channel occupation. CNOT gate
needs two braiding operations between the tiles without changing the cut type but only needs one after modifi-
cation. We adopt the look-forward strategy considering the impact of this modification on the successor gates.
The parameter 6 is used to determine the weights of the two factors M; and M; in the current situation, where
0 = (gr X 2)/(b X n), where g, is the number of ready gates and b is the bandwidth of the chip. We choose to
modify the type of the tile when the M-value is greater than zero.

5 Performance Evaluation

In this section, first, we compare the performance of Ecmas+ with several state-of-the-art methods, Autobraid
[21] for the double defect model and EDPCI [4] for the lattice surgery model. Then, we present the compilation
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results of different circuits on various chips, demonstrating the effectiveness of our chip selection algorithm.
Finally, we evaluate the scalability of our algorithm, and we highlight our key findings as follows:

e Ecmas+ outperforms Autobraid [21], reducing the cycle of the transformed circuit by 66% at most, on
average 46%, for the double defect model.

o For the lattice surgery model, Ecmas+ reaches the optimal solution in most of the test benchmarks, reducing
the cycle of the transformed circuit by 32.4% at most and on average 29.7% compared with EDPCI [4].

e Ecmas+ can identify the most suitable chip for most benchmark circuits, achieving up to a 10.2% reduction
in Circuit Execution Cost.

e Ecmas+ exhibits excellent scalability, effectively reducing the execution time of circuits as the chip size
increases while maintaining linear growth in compilation time.

5.1 Evaluation Setting

Metrics. 1) We use the number of cycles A to represent the execution time, serving as a metric for the effectiveness
of the compilation results. 2) We define the quantum circuit’s space-time cost, Circuit Execution Cost, as A X Tp,,
which reflects the usage of logical tiles and communication resources. Here, T;; is the number of tiles on the chip.
Chip Configuration. We use the same assumption proposed by EDPCI [4] that magic state factories are sufficient
at the chip boundaries, where magic states can be obtained at any time. We evaluate the performance on the
minimum viable chips L;x;, which is the smallest square grid chip that provides enough qubit with bandwidth
b=1.

Baselines. For the double defect and the lattice surgery models, we select the state-of-the-art algorithms Autobraid
[21] and EDPCI [4] as our baselines, respectively. It should be noted that the Autobraid does not involve obtaining
magic states from the boundary. Thus, in this experiment, Autobraid adopts the settings in their work where the
magic state factory is inside the tile, enabling the execution of T gates to require only local CNOT gates within
the tile.

Benchmarks. We use the quantum circuit from the previous works, including IBM Qiskit [36], ScaffCC [25],
QUEKO [43], QASMbench [30] and random circuits. Since surface code supports a restricted set of quantum gates,
we transform the circuits into circuits with only Pauli, H, T, and CNOT gates by Solovay-Kitaev decomposition
in Qiskit.

Evaluation Platform. Our experiments are conducted on a system equipped with Intel®Xeon®Platinum 8360Y
CPUs (36C72T per CPU, 2.4GHz), with 1TB ECC DDR4-3200MHz memory. The operating system is Ubuntu
18.04.1 LTS.

5.2  Main Result

Double Defect Model. We evaluate the performance of Ecmas+ with minimum viable chip. As illustrated
in Table 1, Ecmas+ demonstrates superior performance over the Autobraid methods, achieving a maximum
reduction of 66% in cycles, with an average reduction of 46%. In the sufficient version of our framework (Ecmas+-
ReSu), a further reduction in cycles is observed in 27% of the circuits. Relative to Autobraid, this version realizes
an average reduction of 45.8% in cycles. What stands out in this table is the remarkable optimization achieved
for circuits such as QFT and BV, which can reduce execution time by up to 60%. This significant improvement
is primarily due to the high density of CNOT gates in these circuits, which constitute the main component of
execution time. The initialization of cut types and cut type scheduling method greatly reduces the execution
time of CNOT gates, thereby decreasing the overall execution time of the circuit. Ecmas+-ReSu is not always the

%In our previous work, Ecmas [49], we evaluated only CNOT gates and removed other operations during preprocessing. In Ecmas+, we

retain all gates (including H and T), resulting in different gate counts (g, g5) and deeper circuits (as). This allows for more realistic and
comprehensive scheduling evaluation.
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Table 1. Overview of experiment result on Double Defect Model and Lattice Surgery Model

Circuit name n a; gh gr Jenot  Autobraid Ecmas+dd Ecmas+dd-Re EDPCI Ecmas+ls
dnn_n8 8 541 644 352 192 739 544 541 714 548
grover 9 555 134 65 132 995 583 597 777 555
qpe_n9 9 154 40 18 43 318 162 175 225 154
BV_10 10 16 0 11 5 36 16 16 21 16
QFT_10 10 266 51 10 105 638 266 290 384 266

adder_n10 10 208 56 16 65 424 228 235 294 208
ising_n10 10 192 312 94 90 282 194 192 267 194
sat_nl1 11 833 294 67 252 1649 933 968 1197 833
square_root.n4 11 855 294 62 294 1739 981 1011 1227 855
quantum_walk 11 60018 20659 3542 14372 116374 66306 66558 87489 60018
shor 12 50735 16146 4100 13838 104339 59803 57596 73047 50735
multiplier n15 15 484 252 34 222 1004 578 586 705 486
qf21_n15 15 376 85 32 115 820 388 415 552 376
dnn_n16 16 541 1288 704 384 756 596 541 714 587
square_root_nl18 18 2579 910 194 898 5151 2915 3026 3690 2579
ghz_state_n23 23 47 0 1 22 135 47 47 69 47
multiplier_nZS 25 1376 770 88 670 2883 1646 1667 2007 1382
swap_test_n25 25 210 170 65 96 455 257 246 309 210
wstate_n27 27 57 0 2 52 168 57 57 84 57
BV_50 50 60 0 55 27 168 60 60 87 60
QFT_50 50 5126 291 50 2435 14498 5126 5267 7614 5126
ising_n50 50 39 175 66 98 57 41 39 57 39

! @ is the depth of the circuit while gp,, g;, and genor represent the counts of the circuit’s H, T, and CNOT gates, respectively.

best among these results. This is because, to ensure performance guarantees and avoid worst-case outcomes, the
Ecmas+-ReSu algorithm modifies the cut types of all tiles concurrently. In the case of many single-qubit gates,
each tile has more available time slots. A more greedy cut-type modification may yield better results.

Lattice Surgery Model. Ecmas+ achieves a significant reduction in cycle count, outperforming EDPCI by 29.69%
execution time and providing a maximum reduction of 32.4%. For the majority of circuits, our approach obtains
the optimal solutions as shown in Table 1. Given that the Ecmas+-ReSu for the lattice surgery model is assured
to provide the optimal solution as detailed in Section 4.6, it does not require further performance evaluation
in this study. Since the execution time is always greater than the depth of the logical circuit, the case where
execution time equals the depth cycle count is guaranteed to be an optimal solution. We highlight this case in
bold and italicized font in the table. Our method outperforms EDPCI mainly because our scheduling algorithm
operates at the cycle level, while EDPCI schedules at the logic operation level. Our algorithm accounts for the
varying execution times of different operations, allowing further reductions in the overall circuit execution time.
Chip Selecting. We compiled the benchmark circuits across multiple chips on the lattice surgery model. As
highlighted in Table.2, our chip selection algorithm outperforms the alternatives in 13 out of 16 benchmarks,
achieving the lowest Circuit Execution Cost. Our approach reduces Circuit Execution Cost by up to 10.2%
compared to the baseline algorithm. The baseline algorithms we compare against are based on greedy strategies:
Algorithm QF refers to the qubit resources first algorithm, which selects the smallest chip that satisfies the resource
requirements, minimizing chip size. Algorithm TF selects the largest chip to minimize circuit execution time.
The chip set we selected includes Liasx124, L13s;x13t;> Loty x16;> Lot;x1747> L7tyx206> L7x218> Lstyxest;» and Lsgxoor,,
varies in both size and aspect ratio, where f; is the side length of tile. Since the experimental results for the double
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Table 2. Comparison on Chip Selecting algorithm

Circuit name n oo r: rh Yenot QOFr  QFcee TFn TF.. Ecmas+, Ecmas+..
dnn_n8 8 541 0.338 0.185 0.101 596 83440 550 92950 586 82040
grover 9 555 0.057 0.028 0.057 555 77700 557 94133 557 77980
qpe_n9 9 154 0.059 0.027 0.064 154 21560 154 26026 154 21560
BV_10 10 16 0.0 0.157 0.071 16 2240 16 2704 16 2240
QFT_10 10 266 0.04 0.008 0.082 266 37240 266 44954 266 37240

adder_n10 10 208 0.057 0.016 0.066 210 29400 208 35152 209 29260
ising_nl10 10 192 0.351 0.106 0.101 199 27860 192 32448 204 28560
sat_nll 11 833 0.067 0.015 0.057 834 116760 833 140777 833 116620
square_root.n4 11 855 0.065 0.014 0.065 862 120680 855 144495 858 120120
multiply_ n13 13 79 0.083 0.024 0.079 88 12320 79 13351 79 11060
multiplier n15 15 484 0.071 0.01 0.063 488 68320 484 81796 486 68040
qf21_n15 15 376 0.031 0.012 0.042 376 52640 376 63544 377 52780
dnn_n16 16 541 0.338 0.185 0.101 637 89180 602 101738 617 86380
ghz_state_n23 23 47 0.0 0.002 0.042 47 6580 47 7943 47 6580
swap_test_n25 25 210 0.066 0.025 0.037 214 29960 217 36673 213 29820
wstate_n27 27 57 0.0 0.003 0.069 57 8208 57 9633 57 8208

defect model are similar to those for the lattice surgery model with only CNOT gates, we have omitted the double
defect experiments. Moreover, because the gates in the current circuits are relatively sparse, the differences in
execution time across different chips are more pronounced for denser circuits.

5.3 Sensitivity Study

In this section, we undertake sensitivity analysis focused on location and cut type initialization, gate prioritization,
and modification of cut types.

5.3.1 Location Mapping and Gate Scheduling: As illustrated in Table 3, our method consistently shows superior
performance in most circuits. Compared to the Basis algorithm, our algorithm achieves an average improvement
of 11% in circuit execution time and a maximum reduction of 53% in circuit execution time. The bold results in the
table indicate the cases where the cycle count of our algorithm and circuit depth are the same, which necessarily
represents the optimal solution. In other cases, due to the NP-hard nature of the problem, it is challenging to
determine whether the optimal solution has been achieved under the given resource constraints. The Basis
method starts with a random mapping and executes operations layer by layer. The layered approach executes
one layer of quantum operations from the logical circuit at a time before proceeding to the next layer, similar
to the strategy used in EDPCI [4]. The Ecmas+.;, method uses the same random mapping result of Basis but
applies our scheduling algorithm. The Ecmas+,,,, method combines our algorithm’s mapping with layered
scheduling. Finally, Ours combines both our mapping and scheduling algorithms. Experimental results show that
our scheduling algorithm significantly reduces circuit execution time, while our mapping algorithm is effective
in circuits with a high Circuit Parallelism Degree, such as the swap_test_n25 circuit and ising_n50 circuit.

5.3.2 Cut Type Mapping and Cut Type Scheduling: According to the results in Table 4, our method consistently
outperforms the baseline algorithms across all tested circuits, achieving up to a 58% reduction in execution time
with an average reduction of 43% execution time compared to the Basis.,; algorithm. The Basis.,; algorithm
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Table 3. Comparison of location initialization and gate scheduling in lattice surgery model

Circuit name n o 9t 9nh  YGenor Basis Ecmas+s, Ecmas+,,, Ecmas+
dnn_n8 8 541 644 352 192 573 550 572 545
grover 9 555 134 65 132 576 555 576 555
qpe_n9 9 154 40 18 43 160 154 160 154
QFT_10 10 266 51 10 105 266 266 266 266

adder n10 10 208 56 16 65 214 208 212 208
ising_n10 10 192 312 94 90 245 193 238 194
multiply_n13 13 79 42 12 40 87 79 86 79

square_root_nl18 18 2579 910 194 898 2616 2579 2616 2579
swap_test n25 25 210 170 65 96 253 210 243 210
ising_n50 50 39 175 66 98 84 57 60 39

initializes all tiles with the same cut type and does not change the cut type during circuit execution. The
Ecmas+.,; ., approach uses the same initial cut type mapping but applies our cut type modification algorithm.
The Ecmas+c,; map approach employs our cut type mapping algorithm but does not change the cut type during
scheduling. The location mapping and gate scheduling methods are consistent with Ecmas+ in all four approaches.
It is evident that applying either the mapping or scheduling algorithm alone can significantly optimize circuit
execution time. For circuits with a large number of CNOT gates, the scheduling algorithm yields more pronounced
improvements due to the complex communication relationships between tiles.

Table 4. Comparison of cut type initialization and modification in double defect model

Circuit name n o 9t 9h  Yenot Basise,; Ecmas+cy on Ecmas+eys mgpy Ecmas+
dnn_n38 8 541 644 352 - 192 760 547 547 547
grover 9 555 134 65 132 995 586 803 583
qpe_n9 9 154 40 18 43 318 165 222 162
QFT_10 10 266 51 10 105 638 269 565 266
adder _n10 10 208 56 16 65 424 234 284 228
ising_n10 10 192 312 94 90 281 205 193 193
multiply_n13 13 79 42 12 40 171 99 127 96
square_root_nl18 18 2579 910 194 898 5151 2918 4239 2915
swap_test_ n25 25 210 170 65 96 463 262 304 255
ising_n50 50 39 175 66 98 85 46 45 45

5.3.3 Comparison with Ecmas. To quantitatively assess the improvements brought by Ecmas+, we extend the
original Ecmas framework to naively support universal gate sets without introducing our enhanced mapping, and
scheduling. We compare Ecmas and Ecmas+ across both benchmark circuits and randomly generated circuits. As
summarized in Table 5, under double defect model, Ecmas+ achieves up to a 24% reduction in cycles, while under
lattice surgery model, the maximum reduction reaches 17%. Although some benchmark circuits show minimal
improvement, this is mainly due to the low density of operations in these circuits, which limits optimization
potential. To better assess the impact of operation density, we additionally generated high-density random
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circuits. As shown in Fig.11, both the number of gates and gate density positively correlate with the performance
gains of Ecmas+, with greater improvements observed as gate number increases. Each data point represents the
average of 10 random circuits, all with a depth of 10. The gate rate configuration (e.g., “t_0.1_h_0.1_cx_0.05" as a
representative example) indicates that, in each layer, the number of T, H, and CX gates is set to 10%, 10%, and 5%
of the total number of qubits, respectively.

Table 5. Comparison of Ecmas+ and Ecmas

Circuit name n o g+ 9h  Yenor Ecmasgy Ecmas+z; rategy; Ecmas;s Ecmas+;; ratey
dnn_n8 8 541 644 352 192 563 546 0.03 575 557 0.03
grover 9 555 134 65 132 583 587 -0.01 556 556 0.00
qpe_n9 9 154 40 18 43 162 162 0.00 154 154 0.00
QFT_10 10 266 51 10 105 266 266 0.00 266 266 0.00

adder n10 10 208 56 16 65 228 228 0.00 208 208 0.00
ising_n10 10 192 312 94 90 195 192 0.02 194 193 0.01
multiply_n13 13 79 42 12 40 95 95 0.00 79 79 0.00
square_root_n18 18 2579 910 194 898 2917 2915 0.00 2585 2579 0.00
swap_test n25 25 210 170 65 96 268 256 0.04 216 210 0.03
ising_n50 50 39 175 66 98 54 41 0.24 54 45 0.17
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5.4 Scalability
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(a) Double defect model

Fig. 11. Comparison of Ecmas+ and Ecmas on random circuits.

60 80 100 120 140 160 180 200
Qubit Number

(b) Lattice surgery model

We evaluate the scalability of Ecmas+ to both the size of the quantum circuits and the quantum chips. Each data

point represents the average of 10 randomly generated circuits with a depth of 10.

Scalability over chip size. As shown in Fig. 12, the cycle count of our method decreases as the chip size
increases, indicating that the additional qubit resources are effectively utilized to enhance spatial scheduling effi-
ciency. Meanwhile, the compilation time increases linearly with the chip size, demonstrating that our framework
incurs a manageable overhead when scaling up. Each random circuit consists of 64 qubits.
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Scalability over qubit number. Fig. 13 shows that the compilation time scales linearly with the qubit number,
highlighting the efficiency of our design when dealing with larger circuits. Each point is the average over 10
random circuits with a fixed depth of 10. The chip size used here corresponds to the minimal viable square chip,
i.e., a configuration where the average bandwidth is 1.
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Fig. 12. Scalability of Ecmas+ on chipsize. DD refers to double defect model, and LS refers to lattice surgery model.
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Fig. 13. Scalability of Ecmas+ on qubit number. DD refers to double defect model, and LS refers to lattice surgery model.

6 Related Work

Quantum compilation can be categorized into recent NISQ (Noisy Intermediate-Scale Quantum) compilation
and long-term fault-tolerant compilation. Most existing quantum compilers are designed for physical qubit-level
compilation for NISQ circuits focusing on the gap between logical circuits and hardware constraints. Extensive
research [13, 14, 31, 42, 50] focuses on resolving the challenge of executing CNOT gates on superconducting chips.
Some works are also dedicated to compiling photonic quantum computers [46, 47]. As qubit numbers rise, fault-
tolerant quantum computation is becoming a reality. This development necessitates a new compilation framework
capable of converting circuits into forms encoded with quantum error correction (QEC) codes [29, 34, 44].
Different QEC codes impose various constraints, and our work primarily focuses on the surface code, which is
currently the mainstream QEC code. Depending on the method of constructing logical qubits, surface code can
be divided into the double defect model [12] and the lattice surgery model [20] with different logical operation
implementation strategies. Double defect employs the braiding technique to perform CNOT gates. Braidflash
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[23] abstracts the constraints of CNOT gates implementation into braiding path disjoint. Autobraid [21] further
discovers the local parallelism pattern, enabling efficient search for as many parallel CNOT gates as possible.
However, neither approach considers the cut type issue, which contributes to the prolonged execution time of
CNOT gates. Lattice surgery is a novel entrant in surface code approaches, employing fewer physical qubits
for encoding a logical qubit. It utilizes ZZ measurements for CNOT gate [32]. However, the physical adjacency
requirement for measurements limits its effectiveness. As a result, executing long-range CNOT gates is time-
consuming. EDPCI [4] achieves long-range CNOT gates by utilizing ancilla tiles to construct Bell states and
maximizes communication parallelism using disjoint pathfinding methods.

As quantum technology advances, more research institutions offer quantum cloud services using chip clusters.
Compiler optimization has shifted from single-chip circuit translation to cluster-level improvements [7, 33, 37],
focusing on enhancing throughput and efficiency.

7 Discussion

Generality and Applicability of Ecmas+ While our evaluation focuses on surface codes, the core principles of
Ecmas+ are agnostic to the choice of quantum error correction code. Its strength lies in dynamically allocating
communication resources based on circuit demands. This makes Ecmas+ applicable to a broad range of encoding
schemes. For color codes employing lattice surgery with XX/ZZ measurements, Ecmas+ can optimize communi-
cation ancilla placement, with chip layout adjustments to match their triangular tiling. Moreover, Ecmas+ extends
to unencoded circuits where long-range CNOTs are executed via Bell pairs or teleportation. In these settings, it
assists in ancilla region placement and reuse, supporting space-time trade-offs beyond SWAP-based routing,.

Current Limitations While Ecmas+ demonstrates promising performance across a range of benchmarks,
several limitations remain. First, our chip selection and initial mapping strategies are primarily heuristic and
guided by empirical intuition; they currently lack theoretical guarantees or formal optimization foundations.
Second, the present framework focuses solely on the scheduling of communication resources without considering
other critical ancilla-consuming components, such as magic state factories.

Future Directions To further broaden the applicability of Ecmas+, future work can explore multi-circuit
execution on a single chip. This introduces challenges such as spatial isolation, resource contention, and hetero-
geneous fault tolerance requirements. We also plan to adapt Ecmas+ to modular systems like IBM’s Kookaburra
[1], where inter-module links must be efficiently managed. Tackling these challenges is essential for scaling
quantum systems to realistic multi-programmed workloads.

8 Conclusion

In this paper, we first study the chip selection problem on the quantum cloud platform. Then, we study the
surface code mapping and scheduling problems in both double defect and lattice surgery models. We introduce
Circuit Parallelism Degree to quantitatively analyze quantum circuits and propose a chip selection algorithm that
selects the chip with the lowest overall cost based on circuit characteristics. Next, we characterize the available
chip resources to assess whether they are sufficient. Our transformer features algorithms for scenarios with
limited and sufficient qubit resources. Extensive evaluations show that Ecmas+ provides significant reduction
over the SOTA approaches by reducing the execution time by 46% on average for the double defect model and
29.7% execution time for the lattice surgery model.
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